

BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing

Dr. Ngai WONG *Oct. 2021*

Department of Electrical and Electronic Engineering The University of Hong Kong

■ Introduction

- \blacksquare AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
	- Software: Design Algorithm
	- \blacksquare Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results
- Conclusion

■ Introduction

- \blacksquare AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
	- Software: Design Algorithm
	- Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results
- Conclusion

Introduction

ur Rehman M. H., et al. "Towards blockchain-based reputation-aware federated learning." IEEE INFOCOM 2020.

China AIoT Market 2018-2022e

Source: iResearch Jan 2020

- Integration of AI and IoT in practical applications
- Implementation of AIoT $\lceil \uparrow \rceil$ => intelligent terminal devices $\lceil \uparrow \rceil$ \Rightarrow edge computing | \uparrow |
- The ability of efficient computing power, local autonomous decision-making and response
- This ML calculation must occur on the device side rather than the cloud

Introduction

Machine learning at the edge device

creates benefits and challenges in the meantime

- \checkmark User-specific data
- \checkmark Quick responsiveness
- ✓ Low power
- \checkmark Good privacy

- ➢ High energy-efficient
- ➢ High throughput
- ➢ On-device training
- ➢ Large neural network model

Requirement for Structure Evolution

Requirement for Structure Evolution

7 ASICON 2021 BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing Oct. 2021

Devices for In-Memory Computing

A Proposed BATMANN based on binary neural network (BNN) design techniques

- **Today's topic** ➢ Non-volatile memory characteristic
	- ➢ Reliability and compatibility with CMOS fabrication process
	- ➢ RRAM-based crossbars for performing MVM
	- ➢ Hardware-friendly neural network BNN

■ Introduction

- AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
	- Software: Design Algorithm
	- Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results
- Conclusion

Memory-Augmented Neural Network (MANN)

Limitations of existing networks that aim to handle temporal dependencies in sequential prediction problems.

- **1. Recurrent Neural Networks (RNNs)**
	- \triangleright vanishing gradients
	- \triangleright exponential growth in the number of parameters
	- ➢ costly computation due to increased memory size

2. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

 \triangleright have difficulties when searching through past memories

ASICON 2021 BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing $_{\rm Oct.~2021}$ 10

Memory-Augmented Neural Network (MANN)

MANN is proposed to alleviate the gradient vanishing problem as it satisfies two criteria:

- 1. the information stored in the memory is stable and element-wise addressable
- 2. the number of learnable network parameters are not tied with the size of the memory

There are two main components in a MANN:

1. a controller

The controller can learn how to read from and write to the memory.

2. external memory

Key memory: it stores and compares the learned patterns.

Value memory: it holds the labels.

11 ASICON 2021 BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing Oct. 2021

Memory-Augmented Neural Network (MANN)

Limitations: *Karunaratne, Geethan, et al. "Robust high-dimensional memory-augmented neural networks." Nature communications (2021)*

- 1. The controller is full-precision.
- 2. The similarity measure and sharpening function are inconsistent in the training and inference stages. (Training: cosine similarity + softabs. Inference: dot product + abs.)

12 ASICON 2021 BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing Oct. 2021

Software: Design Algorithm

The architecture of the proposed BATMANN implemented on RRAM, which contains not only the key-value memory but also a binarized controller, all realizable with 2-level RRAM cells.

Remarks:

- 1. Only the first layer of the controller is 8/32-bit, whereas the remaining layers (including the last FC layer) are all binarized.
- 2. The similarity measure and the sharpening function are consistent during learning and inference phases, without gradient approximation during backpropagation.
- 3. BNN training scheme:
	- 1) XNOR-Net: it attempts to minimize the quantization error arising from mapping the FP weights to their quantized levels with a learnable per-channel scaling factor.
	- 2) RBNN: it further accounts for the angular bias between the FP and bipolar weightsand tries to minimize it during training.

ASICON 2021 BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing $_{\rm Oct.~2021}$ 13

Hardware: RRAM Crossbars

- ➢ In practice, network model pretrained on software.
- ➢ Each layer can be mapped onto RRAM crossbar.
- ➢ Device variation on the network lead to classification accuracy loss

Hardware: Bipolar Synaptic Weights Implementation (1)

Challenges:

The synaptic weights in each layer of DNN can be either positive or negative, but the conductance of an RRAM cell is always positive and cannot be programmed to be a real negative value.

Double-Column (DC) Approach

$$
I_1^+ = \sum_{i=1}^n V_i G_{i1}^+
$$
 (1a)

$$
I_1^- = \sum_{i=1}^n V_i G_{i1}^- \tag{1b}
$$

$$
I_1^+ - I_1^- = \sum_{i=1}^n V_i (G_{i1}^+ - G_{i1}^-)
$$
 (2)

 $G_{ij}^{+}, G_{ij}^{-} \in [G_{\min}, G_{\max}]$

- \triangleright Each synaptic weight is mapped to an RRAM-cell pair
- ASICON 2021 BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing Oct. 2021 **15**
and the subtrained Network for Efficient In-Memory Computing Oct. 2021 **Signal Processing (** ➢ The subtraction of the differential pair column *(I⁺ -I -)* can be obtained from *Eq.(2)* that includes *(Gi1 + - Gi1 -)* factor
	- ➢ Each conductance value will belong to a set of *[Gmin, Gmax]*

bipolar synaptic weight

$V_{outj} = -(\frac{V_{bias}}{R} + \sum_{i=1}^{n} V_i G_{ij})R$ **R R R R** where $V_{bias} = -\sum_{i=1}^{n} V_i G_{bias} R_i$

$$
i=1
$$

\n
$$
V_{outj} = \sum_{i=1}^{n} V_i W_{ij}
$$
 (4)
\nwhere $W_{ij} = (G_{bias} - G_{ij})R$

- Half of RRAM devices is saved
- \triangleright The extra peripheral circuits
	- and one additional bias column

bipolar synaptic weight

R

Vbias

The synaptic weights in each layer of DNN can be either positive or negative, but the conductance of an RRAM cell is always positive and cannot be programmed to be a real negative value.

Hardware: Bipolar Synaptic Weights Implementation (2)

- 1. The inputs are delivered into bias RRAM cells.
- 2. The opposite terminals of bias RRAMs are collected together and connected to the negative terminal of the amplifier.

 (3)

- 3. On the back-end, the summation of the currents is delivered into another amplifier for I-to-V conversion.
- 4. The output of each column contains a defined *Wij* factor

 $\frac{16}{10}$ BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing Oct. 2021 $\frac{16}{10}$

■ Introduction

- AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
	- Software: Design Algorithm
	- Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results
- Conclusion

Experimental Results

Controller evaluation results under different schemes:

- ◆ **FP32:** full-precision controller.
- ◆ XNOR: binarized controller with 8-bit first CONV layer and 8-bit last FC layer training in the XNOR scheme.
- **RBNN:** binarized controller with FP32 first CONV layer and 8-bit last FC layer training in the RBNN scheme.
- ◆ BATMANN_X: binarized controller with 8-bit first CONV layer and binarized last FC layer training in the XNOR scheme.
- ◆ BATMANN_R: binarized controller with FP32 first CONV layer and binarized last FC layer training in the RBNN scheme.

Experimental Results

Deploy on RRAM crossbars with considering device variations.

◆ It shows the trend of accuracy degradation with an increased standard deviation *σ* from 0 to 1400 with respect to the memristance of each RRAM cell.

(remains almost unchanged for *σ* up to 600, and drops sharply when *σ* goes beyond 1000)

ASICON 2021 BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing $_{\rm Oct. 2021}$ 19

■ Introduction

- AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
	- Software: Design Algorithm
	- Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results

■ Conclusion

Conclusion

- \checkmark A binarized-all-through memory augmented neural network (BATMANN) is proposed.
- \checkmark Both the encoder and memory units are end-to-end trained and realized with RRAM crossbars using simple 2-level cells.
- \checkmark BATMANN provides a promising solution for in-memory AI computing on the edge application.

Acknowledgement

- \Box This work is support in part by the General Research Fund (GRF) project
	- 17206020, and in part by ACCESS AI Chip Center for Emerging Smart
	- Systems, Hong Kong SAR.

Thank you for your attention Q&A

