

BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing

Dr. Ngai WONG Oct. 2021

Department of Electrical and Electronic Engineering The University of Hong Kong

ASICON 2021

Introduction

- AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
 - Software: Design Algorithm
 - Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results
- Conclusion

Introduction

- AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
 - Software: Design Algorithm
 - Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results
- Conclusion

Introduction

ur Rehman M. H., et al. "Towards blockchain-based reputation-aware federated learning." IEEE INFOCOM 2020.

China AIoT Market 2018-2022e

Source: iResearch Jan 2020

- Integration of AI and IoT in practical applications
- Implementation of AIoT 1 => intelligent terminal devices 1
 edge computing 1
- The ability of efficient computing power, local autonomous decision-making and response
- This ML calculation must occur on the device side rather than the cloud

4

Introduction

Machine learning at the edge device

creates benefits and challenges in the meantime

- ✓ User-specific data
- ✓ Quick responsiveness
- ✓ Low power
- ✓ Good privacy

- High energy-efficient
- High throughput
- On-device training
- Large neural network model

5

Requirement for Structure Evolution

Requirement for Structure Evolution

Devices for In-Memory Computing

Today's topic

A Proposed BATMANN based on binary neural network (BNN) design techniques

- Non-volatile memory characteristic
- Reliability and compatibility with CMOS fabrication process
- RRAM-based crossbars for performing MVM
- Hardware-friendly neural network BNN

Introduction

- AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
 - Software: Design Algorithm
 - Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results
- Conclusion

Memory-Augmented Neural Network (MANN)

Limitations of existing networks that aim to handle temporal dependencies in sequential prediction problems.

- 1. Recurrent Neural Networks (RNNs)
 - vanishing gradients
 - exponential growth in the number of parameters
 - costly computation due to increased memory size

2. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

have difficulties when searching through past memories

Memory-Augmented Neural Network (MANN)

MANN is proposed to alleviate the gradient vanishing problem as it satisfies two criteria:

- 1. the information stored in the memory is stable and element-wise addressable
- 2. the number of learnable network parameters are not tied with the size of the memory

There are two main components in a MANN:

1. a controller

The controller can learn how to read from and write to the memory.

2. external memory

Key memory: it stores and compares the learned patterns.

Value memory: it holds the labels.

Memory-Augmented Neural Network (MANN)

Limitations:

Karunaratne, Geethan, et al. "Robust high-dimensional memory-augmented neural networks." Nature communications (2021)

- 1. The controller is full-precision.
- The similarity measure and sharpening function are inconsistent in the training and inference stages. (Training: cosine similarity + softabs. Inference: dot product + abs.)

ASICON 2021

Oct. 2021

Software: Design Algorithm

The architecture of the proposed BATMANN implemented on RRAM, which contains not only the key-value memory but also a binarized controller, all realizable with 2-level RRAM cells.

Remarks:

- 1. Only the first layer of the controller is 8/32-bit, whereas the remaining layers (including the last FC layer) are all binarized.
- 2. The similarity measure and the sharpening function are consistent during learning and inference phases, without gradient approximation during backpropagation.
- 3. BNN training scheme:
 - 1) XNOR-Net: it attempts to minimize the quantization error arising from mapping the FP weights to their quantized levels with a learnable per-channel scaling factor.
 - 2) RBNN: it further accounts for the angular bias between the FP and bipolar weightsand tries to minimize it during training.

ASICON 2021

Hardware: RRAM Crossbars

- > In practice, network model pretrained on software.
- Each layer can be mapped onto RRAM crossbar.
- Device variation on the network lead to classification accuracy loss

Hardware: Bipolar Synaptic Weights Implementation (1)

Challenges:

The synaptic weights in each layer of DNN can be either positive or negative, but the conductance of an RRAM cell is always positive and cannot be programmed to be a real negative value.

Double-Column (DC) Approach

$$I_1^+ = \sum_{i=1}^n V_i G_{i1}^+ \tag{1a}$$

$$I_1^- = \sum_{i=1}^n V_i G_{i1}^- \tag{1b}$$

$$I_1^+ - I_1^- = \sum_{i=1}^n V_i (G_{i1}^+ - G_{i1}^-)$$
(2)

 $G_{ij}^+, G_{ij}^- \in [G_{\min}, G_{\max}]$

- Each synaptic weight is mapped to an RRAM-cell pair
- ➤ The subtraction of the differential pair column (*I*+-*I*-) can be obtained from Eq.(2) that includes $(G_{i1}^{+} G_{i1}^{-})$ factor
- Each conductance value will belong to a set of [Gmin, Gmax]

bipolar synaptic weight

_{Oct. 2021} 15

RRAM cell is always positive and cannot be programmed to be a real negative value. V_{bias}

Hardware: Bipolar Synaptic Weights Implementation (2)

The synaptic weights in each layer of DNN can be either positive or negative, but the conductance of an

$$V_{outj} = -\left(\frac{V_{bias}}{R} + \sum_{i=1}^{n} V_i G_{ij}\right)R \tag{3}$$

where
$$V_{bias} = -\sum_{i=1}^{n} V_i G_{bias} R$$

$$V_{outj} = \sum_{i=1}^{n} V_i W_{ij}$$
where $W_{ij} = (G_{bias} - G_{ij})R$
(4)

- Half of RRAM devices is saved
- > The extra peripheral circuits
 - and one additional bias column

bipolar synaptic weight

- 1. The inputs are delivered into bias RRAM cells.
- 2. The opposite terminals of bias RRAMs are collected together and connected to the negative terminal of the amplifier.
- 3. On the back-end, the summation of the currents is delivered into another amplifier for I-to-V conversion.
- 4. The output of each column contains a defined W_{ii} factor

ASICON 2021

Challenges:

BATMANN: A Binarized-All-Through Memory-Augmented Neural Network for Efficient In-Memory Computing

_{Oct. 2021} 16

Introduction

- AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
 - Software: Design Algorithm
 - Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results
- Conclusion

Experimental Results

Controller evaluation results under different schemes:

- ◆ **FP32:** full-precision controller.
- XNOR: binarized controller with 8-bit first CONV layer and 8-bit last FC layer training in the XNOR scheme.
- **RBNN:** binarized controller with FP32 first CONV layer and 8-bit last FC layer training in the RBNN scheme.
- BATMANN_x: binarized controller with 8-bit first CONV layer and binarized last FC layer training in the XNOR scheme.
- BATMANN_R: binarized controller with FP32 first CONV layer and binarized last FC layer training in the RBNN scheme.

No	. Controller	Learni Key	ng Similarity	Func	Controller	Infere Key	ence Similarity	Func	Acc. (%)	
1	FP32				FP32	1				-
2	XNOR [9]	Bipolar	Cosine	Softabs	Bipolar	Bipolar	Dot	Abs	95.49	Best
3	$BATMANN_X$	Bipolar	Dot	Abs	Bipolar	Bipolar	Dot	Abs	96.53	Performance!
4	RBNN [10]	Bipolar	Cosine	Softabs	Bipolar	Bipolar	Dot	Abs	96.30	Perjornance:
5	$BATMANN_R$	Bipolar	Dot	Abs	Bipolar	Bipolar	Dot	Abs	5.00	

Experimental Results

Deploy on RRAM crossbars with considering device variations.

• It shows the trend of accuracy degradation with an increased standard deviation σ from 0 to 1400 with respect to the memristance of each RRAM cell. (remains almost unchanged for σ up to 600, and drops sharply when σ goes beyond 1000)

ASICON 2021

Introduction

- AIoT & Machine Learning
- Requirement for Structure Evolution In-Memory Computing
- Proposed Binarized-All-Through Memory-Augmented Neural Network (MANN)
 - Software: Design Algorithm
 - Hardware: RRAM Crossbars & Bipolar Synaptic Weights Implementation
- Experimental Results

Conclusion

Conclusion

- ✓ A binarized-all-through memory augmented neural network (BATMANN) is proposed.
- ✓ Both the encoder and memory units are end-to-end trained and realized with RRAM crossbars using simple 2-level cells.
- ✓ BATMANN provides a promising solution for in-memory AI computing on the edge application.

Acknowledgement

- □ This work is support in part by the General Research Fund (GRF) project
 - 17206020, and in part by ACCESS AI Chip Center for Emerging Smart
 - Systems, Hong Kong SAR.

Thank you for your attention Q&A

